Surface embeddings of Steiner triple systems
نویسندگان
چکیده
A Steiner triple system of order n (STS(n)) is said to be embeddable in an orientable surface if there is an orientable embedding of the complete graph Kn whose faces can be properly 2-coloured (say, black and white) in such a way that all black faces are triangles and these are precisely the blocks of the STS(n). If, in addition, all white faces are triangular, then the collection of all white triangles forms another STS(n); the pair of such STS(n)s is then said to have an (orientable) bi-embedding. We study several questions related to embeddings and bi-embeddings of STSs.
منابع مشابه
Self-embeddings of doubled affine Steiner triple systems
Given a properly face two-coloured triangulation of the graph Kn in a surface, a Steiner triple system can be constructed from each of the colour classes. The two Steiner triple systems obtained in this manner are said to form a biembedding. If the systems are isomorphic to each other it is a self-embedding. In the following, for each k ≥ 2, we construct a self-embedding of the doubled affine S...
متن کاملSelf-embeddings of Hamming Steiner triple systems of small order and APN permutations
The classification, up to isomorphism, of all self-embedding monomial power permutations of Hamming Steiner triple systems of order n = 2m − 1 for small m, m ≤ 22, is given. As far as we know, for m ∈ {5, 7, 11, 13, 17, 19}, all given self-embeddings in closed surfaces are new. Moreover, they are cyclic for all m and nonorientable at least for all m ≤ 19. For any non prime m, the nonexistence o...
متن کاملOn the Bi-embeddability of Certain Steiner Triple Systems of Order 15
There are 80 non-isomorphic Steiner triple systems of order 15. A standard listing of these is given in [8]. We prove that systems #1 and #2 have no biembedding together in an orientable surface. This is the first known example of a pair of Steiner triple systems of order n, satisfying the admissibility condition n ≡ 3 or 7 (mod 12), which admits no orientable bi-embedding. We also show that th...
متن کاملEmbedding Steiner triple systems into Steiner systems S(2, 4, v)
We initiate a systematic study of embeddings of Steiner triple systems into Steiner systems S(2; 4; v). We settle the existence of an embedding of the unique STS(7) and, with one possible exception, of the unique STS(9) into S(2; 4; v). We also obtain bounds for embedding sizes of Steiner triple systems of larger orders. c © 2003 Elsevier B.V. All rights reserved.
متن کاملFace Two-colourable Triangulations of K 13
Face two-colourable triangular embeddings of complete graphs Kn correspond to biembeddings of Steiner triple systems. Such embeddings exist only if n is congruent to 1 or 3 modulo 6. In this paper we present the number of these embeddings for n = 13.
متن کامل